STOCK TITAN

Notifications

Limited Time Offer! Get Platinum at the Gold price until January 31, 2026!

Sign up now and unlock all premium features at an incredible discount.

Read more on the Pricing page

BTQ Technologies and Macquarie University Publish Peer Reviewed Breakthrough that Simplifies Quantum Error Correction for Scalable Systems

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags

BTQ Technologies (OTCQX:BTQQF) and Macquarie University have published groundbreaking research in Physical Review Research, demonstrating a simplified approach to quantum error correction. The breakthrough allows checking errors in quantum low density parity check codes without moving qubits, by connecting them through a shared cavity.

The research, presented at CERN on September 15, 2025 by BTQ's Chief Quantum Officer Dr. Gavin Brennen, shows that multiple qubits can be verified simultaneously in a fixed number of steps. The method operates at performance levels achievable by current laboratories and aligns with neutral atom roadmaps, making quantum systems simpler to control and easier to scale.

This advancement particularly strengthens BTQ's position in developing reliable quantum systems for secure communications and cryptography by reducing control complexity and implementation risks.

BTQ Technologies (OTCQX:BTQQF) e l'Università Macquarie hanno pubblicato ricerche innovative in Physical Review Research, dimostrando un approccio semplificato alla correzione degli errori quantistici. Il progresso permette di controllare gli errori nei codici di controllo di parità a bassa densità quantistica senza spostare i qubit, collegandoli tramite una cavità condivisa.

La ricerca, presentata a CERN il 15 settembre 2025 dal Chief Quantum Officer di BTQ, il dottor Gavin Brennen, dimostra che più qubit possono essere verificati simultaneamente in un numero fisso di passi. Il metodo funziona a livelli di prestazioni raggiungibili dai laboratori odierni e si allinea con le roadmap degli atomi neutri, rendendo i sistemi quantistici più semplici da controllare e più facili da scalare.

Questo progresso rafforza particolarmente la posizione di BTQ nello sviluppo di sistemi quantistici affidabili per comunicazioni sicure e crittografia, riducendo la complessità di controllo e i rischi di implementazione.

BTQ Technologies (OTCQX:BTQQF) y la Universidad Macquarie han publicado una investigación innovadora en Physical Review Research, demostrando un enfoque simplificado para la corrección de errores cuánticos. El avance permite verificar errores en códigos de paridad de baja densidad cuántica sin mover los qubits, conectándolos a través de una cavidad compartida.

La investigación, presentada en CERN el 15 de septiembre de 2025 por el Director de Quantum de BTQ, el Dr. Gavin Brennen, demuestra que múltiples qubits pueden ser verificados simultáneamente en un número fijo de pasos. El método funciona a niveles de rendimiento alcanzables por los laboratorios actuales y se alinea con las hojas de ruta de átomos neutros, haciendo que los sistemas cuánticos sean más fáciles de controlar y escalar.

Este avance fortalece especialmente la posición de BTQ en el desarrollo de sistemas cuánticos confiables para comunicaciones seguras y criptografía, reduciendo la complejidad de control y los riesgos de implementación.

BTQ Technologies (OTCQX:BTQQF)와 Macquarie 대학교는 Physical Review Research에 혁신적인 연구를 발표했고, 양자 오류 수정에 대한 간소화된 접근법을 보여주었습니다. 이 혁신은 qubit를 이동시키지 않고도 공유 캐비티를 통해 저밀도 양자 패리티 체크 코드의 오류를 확인할 수 있게 합니다.

연구는 2025년 9월 15일 CERN에서 BTQ의 최고 양자 책임자 Dr. Gavin Brennen이 발표했으며, 여러 qubit를 고정된 단계 수로 동시에 검증할 수 있음을 시사합니다. 이 방법은 현재 실험실에서 달성 가능한 성능 수준에서 작동하며 중성 원자 로드맵과도 일치하여 양자 시스템을 더 쉽게 제어하고 확장하기 쉽게 만듭니다.

이 발전은 특히 보안 통신과 암호화를 위한 신뢰할 수 있는 양자 시스템 개발에서 제어 복잡성과 구현 위험을 줄임으로써 BTQ의 위치를 강화합니다.

BTQ Technologies (OTCQX:BTQQF) et l'Université Macquarie ont publié des recherches révolutionnaires dans Physical Review Research, démontrant une approche simplifiée de la correction d'erreurs quantiques. Cette avancée permet de vérifier les erreurs dans les codes de parité à faible densité quantique sans déplacer les qubits, en les reliant via une cavité commune.

La recherche, présentée à CERN le 15 septembre 2025 par le Chief Quantum Officer de BTQ, le Dr Gavin Brennen, montre que plusieurs qubits peuvent être vérifiés simultanément en un nombre fixe d'étapes. La méthode fonctionne à des niveaux de performance accessibles par les laboratoires actuels et s'aligne sur les feuilles de route des atomes neutres, rendant les systèmes quantiques plus faciles à contrôler et à faire évoluer.

Cette avancée renforce particulièrement la position de BTQ dans le développement de systèmes quantiques fiables pour les communications sécurisées et la cryptographie, en réduisant la complexité de contrôle et les risques de mise en œuvre.

BTQ Technologies (OTCQX:BTQQF) und die Macquarie-Universität haben bahnbrechende Forschung in Physical Review Research veröffentlicht und einen vereinfachten Ansatz zur Quantenfehlerkorrektur demonstriert. Der Durchbruch ermöglicht es, Fehler in Codes für Parität mit niedriger Dichte der Quanten zu überprüfen, ohne Qubits zu verschieben, indem sie durch eine geteilte Kammer verbunden werden.

Die Forschung, am CERN am 15. September 2025 von BTQs Chief Quantum Officer Dr. Gavin Brennen vorgestellt, zeigt, dass mehrere Qubits gleichzeitig in einer festen Schrittanzahl verifiziert werden können. Die Methode arbeitet mit Leistungsniveaus, die von heutigen Laboren erreichbar sind, und stimmte mit den Roadmaps neutraler Atome überein, wodurch Quantensysteme einfacher zu kontrollieren und leichter skalierbar werden.

Dieser Fortschritt stärkt insbesondere BTQs Position bei der Entwicklung zuverlässiger Quantensysteme für sichere Kommunikation und Kryptografie, indem er die Kontrollkomplexität und Implementierungsrisiken reduziert.

BTQ Technologies (OTCQX:BTQQF) وجامعة ماكواري قد نشرتا بحثاً رائداً في Physical Review Research، يظهر نهجاً مبسطاً لتصحيح الأخطاء الكمومية. الاختراق يتيح فحص الأخطاء في رموز التحقق من الزوجية منخفضة الكثافة الكمومية دون تحريك ثلاثيات الكيوبت، من خلال ربطها باعتبارها غرفة مشتركة.

تم تقديم البحث، في سيرن في 15 سبتمبر 2025 من قبل المدير التنفيذي للكموم BTQ الدكتور جافن برنن، الذي يظهر أن كيوبتات متعددة يمكن التحقق منها في وقت واحد في عدد ثابت من الخطوات. يعمل الأسلوب بمستويات أداء يمكن مختبرات اليوم الوصول إليها ويتماشى مع مخططات الذرات المحايدة، مما يجعل الأنظمة الكمومية أسهل للتحكم وأكثر قابلية للتطوير.

هذا التقدم يعزز بشكل خاص موقع BTQ في تطوير أنظمة كمومية موثوقة للاتصالات الآمنة والتشفير من خلال تقليل تعقيد التحكم ومخاطر التطبيق.

BTQ Technologies (OTCQX:BTQQF) 与麦考瑞大学在 Physical Review Research 发表了开创性研究,展示了简化的量子误差更正方法。该突破通过共享腔体将量子比特连接在一起,在不移动量子比特的情况下检查低密度量子校验码中的错误。

研究由 BTQ 的首席量子官 Gavin Brennen 博士在 2025 年 9 月 15 日的 CERN 介绍,显示多个量子比特可以在固定步数内同时进行验证。该方法在当前实验室可达到的性能水平下运行,并与中性原子路线图保持一致,使量子系统 更易控制、便于扩展

这一进展特别加强了 BTQ 在开发用于安全通信和密码学的可靠量子系统方面的地位,降低了控制复杂性和实现风险。

Positive
  • Breakthrough enables checking multiple qubits simultaneously without physical movement
  • Method operates with currently available laboratory equipment, accelerating implementation
  • Simplified control system reduces complexity and potential failure points
  • Technology aligns with neutral atom platforms, supporting scalability
  • Peer-reviewed validation and CERN presentation demonstrate scientific credibility
Negative
  • Still requires cavity cooperativity in the range of 10,000 to 1 million
  • Technology remains in research phase, requiring further validation in real devices
  • BTQ and Macquarie Publish Breakthrough in Quantum Error Correction: BTQ Technologies and Macquarie University published a peer reviewed result in Physical Review Research showing a practical way to check errors in high performing quantum low density parity check codes without moving qubits. By linking qubits through a shared cavity, many qubits can be verified at once in a fixed number of steps, making systems simpler to control and easier to scale.
  • Reinforcing Leadership in Quantum Security: The approach operates at performance levels within reach of leading laboratories and fits neutral atom roadmaps that BTQ actively pursues. This strengthens BTQ focus on building reliable quantum systems for secure communications and advanced cryptography by reducing control complexity and implementation risk.
  • CERN Presentation and Next Steps: BTQ's Chief Quantum Officer, Dr. Gavin Brennen presented the results at CERN on September 15, 2025. BTQ will fold these techniques into reference designs and simulations, work with partners on hardware pathways, and target near term demonstrations in real devices to accelerate progress toward dependable quantum systems.

VANCOUVER, BC, Sept. 17, 2025 /PRNewswire/ - BTQ Technologies Corp. (the "Company" or "BTQ") ("BTQ" or the "Company") (CBOE CA: BTQ) (FSE: NG3) (OTCQX: BTQQF), a global quantum technology company focused on securing mission-critical networks, is pleased to announce peer-reviewed research result with Macquarie University published in Physical Review Research. The collaboration shows a practical way to perform quantum error correction on high-performing quantum low density parity check codes using a shared cavity to link qubits. The method avoids physically moving qubits and keeps the number of steps fixed, which makes systems easier to scale and operate. The results were presented on September 15, 2025 at CERN by BTQ's Chief Quantum Officer, Dr. Gavin Brennen.

Why this matters

  • Simpler control
    Many qubits can be checked in a constant number of steps which reduces complexity and speeds progress.

  • Fewer failure points
    No qubit shuttling or swapping means fewer opportunities for mistakes during operation.

  • Built on equipment within reach today
    The shared cavity approach targets performance levels that leading laboratories already pursue which shortens the path from paper to prototype.

  • Aligned with leading hardware roadmaps
    The team outlines a trilayer architecture that fits neutral atom platforms which are a promising route to large scale quantum systems.

What the research shows

The study demonstrates that some of the best performing quantum error correcting codes can be measured in a fault tolerant way by connecting qubits through a shared cavity mode. Recent advances in cavity mediated many body gates make this possible and remove the need to move qubits around. Simulations that include realistic noise sources show promising performance and suggest that this approach can be engineered with cooperativity ranges accessible to platforms like neutral atom quantum computers.

Professor Gavin K Brennen, Macquarie University and Chief Quantum Officer, BTQ Technologies
"I am very happy with the outcome of our BTQ and Macquarie collaboration. Over the past decade there have been major advances in the development of better quantum error correction codes to make quantum computers work reliably, but implementing these on real quantum computers has remained a challenge. We show that the non local stabilizer checks in some of the highest performing qLDPC codes can be done in a fault tolerant way without moving qubits. By linking qubits through a shared cavity mode at performance levels within reach today we keep the circuit depth constant and simplify control. This gives a practical path to adopting these codes in platforms like neutral atom quantum computers."

Olivier Roussy Newton Chief Executive Officer BTQ Technologies
"
Error correction is the bridge from lab experiments to reliable machines. This result turns a hard engineering challenge into a practical design choice by letting us check many qubits at once without moving them and with tools already available. For BTQ this shortens the path from research to working prototypes, lowers development risk and supports our roadmap in fault tolerant quantum processing applied to secure communications and cryptography. We plan to fold these methods into our platform work and hardware collaborations so we can deliver quantum secure products sooner with simpler control and stronger performance."

Potential impact

These results support faster progress toward fault tolerant prototypes that can run longer and handle more complex algorithms. They provide a clearer path to applications in fault tolerant quantum processing for secure communications and advanced cryptography that align with BTQ product strategy. Publication in a peer reviewed journal and a presentation at CERN offer strong validation and global visibility.

Technical snapshot

The work uses hypergraph product and lifted product codes with nonlocal stabilizers. It relies on a deterministic cavity mediated many body gate to create and read nonlocal GHZ states and to measure stabilizers in constant depth. Circuit level noise simulations that include leakage and collective error show encouraging thresholds for hypergraph product codes and promising pseudothresholds for lifted product codes. The target hardware operates at cavity cooperativity in the range of roughly ten thousand to one million and uses a trilayer architecture that is compatible with neutral atom platforms.

Significance and future outlook for BTQ

This result strengthens BTQ research and product development by turning a hard error correction task into a constant depth method that works with equipment available today. The Company will fold these techniques into reference designs and simulations, explore hardware pathways with partners and target near term demonstrations that validate constant depth stabilizer checks in real devices. Success would shorten the path to reliable systems for quantum secure communications and advanced cryptography and guide simpler control stacks and interfaces across the Company's platform work. BTQ will share progress through open research publication and updates as it reaches design studies and prototype milestones.

About BTQ

BTQ Technologies Corp. (Cboe CA: BTQ | FSE: NG3 | OTCQX: BTQQF) is a vertically integrated quantum company accelerating the transition from classical networks to the quantum internet. Backed by a broad patent portfolio, BTQ pioneered the industry's first commercially significant quantum advantage and now delivers a full-stack, neutral-atom quantum computing platform with end-to-end hardware, middleware, and post-quantum security solutions for finance, telecommunications, logistics, life sciences, and defense.

Connect with BTQ: Website | LinkedIn | X/Twitter

ON BEHALF OF THE BOARD OF DIRECTORS
Olivier Roussy Newton
CEO, Chairman

Neither Cboe Canada nor its Regulation Services Provider accepts responsibility for the adequacy or accuracy of this release.

Forward Looking Information

Certain statements herein contain forward-looking statements and forward-looking information within the meaning of applicable securities laws. Such forward-looking statements or information include but are not limited to statements or information with respect to the business plans of the Company, including with respect to its research partnerships, and anticipated markets in which the Company may be listing its common shares. Forward-looking statements or information often can be identified by the use of words such as "anticipate", "intend", "expect", "plan" or "may" and the variations of these words are intended to identify forward-looking statements and information.

The Company has made numerous assumptions including among other things, assumptions about general business and economic conditions, the development of post-quantum algorithms and quantum vulnerabilities, and the quantum computing industry generally. The foregoing list of assumptions is not exhaustive.

Although management of the Company believes that the assumptions made and the expectations represented by such statements or information are reasonable, there can be no assurance that forward-looking statements or information herein will prove to be accurate. Forward-looking statements and information are based on assumptions and involve known and unknown risks which may cause actual results to be materially different from any future results, expressed or implied, by such forward-looking statements or information. These factors include risks relating to: the availability of financing for the Company; business and economic conditions in the post-quantum and encryption computing industries generally; the speculative nature of the Company's research and development programs; the supply and demand for labour and technological post-quantum and encryption technology; unanticipated events related to regulatory and licensing matters and environmental matters; changes in general economic conditions or conditions in the financial markets; changes in laws (including regulations respecting blockchains); risks related to the direct and indirect impact of COVID-19 including, but not limited to, its impact on general economic conditions, the ability to obtain financing as required, and causing potential delays to research and development activities; and other risk factors as detailed from time to time. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. 

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/btq-technologies-and-macquarie-university-publish-peer-reviewed-breakthrough-that-simplifies-quantum-error-correction-for-scalable-systems-302559016.html

SOURCE BTQ Technologies Corp.

FAQ

What breakthrough did BTQ Technologies (BTQQF) announce in quantum error correction?

BTQ and Macquarie University developed a method to check errors in quantum low density parity check codes without moving qubits, by linking them through a shared cavity. This makes quantum systems simpler to control and easier to scale.

How does BTQ's new quantum error correction method improve existing systems?

The method allows checking multiple qubits simultaneously in a fixed number of steps, eliminates the need for qubit movement, reduces control complexity, and decreases potential failure points in quantum systems.

What is the significance of BTQ's quantum breakthrough for quantum computing?

The breakthrough simplifies quantum error correction, making it easier to build reliable quantum systems for secure communications and cryptography, while operating at performance levels achievable by current laboratories.

When did BTQ present their quantum error correction research at CERN?

BTQ's Chief Quantum Officer, Dr. Gavin Brennen, presented the research results at CERN on September 15, 2025.

What are the technical requirements for BTQ's new quantum error correction system?

The system requires cavity cooperativity ranging from 10,000 to 1 million and uses a trilayer architecture compatible with neutral atom platforms.
Btq Technologies Corp

OTC:BTQQF

BTQQF Rankings

BTQQF Latest News

BTQQF Latest SEC Filings

BTQQF Stock Data

532.84M
72.31M
31.9%
Software - Infrastructure
Technology
Link
Canada
Vancouver