STOCK TITAN

Qifu Technology's Paper Accepted by IJCAI 2025, Using MLLM to Pave New Path in Fintech

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Positive)
Tags
Qifu Technology (NASDAQ: QFIN) and Beijing Jiaotong University have achieved a significant milestone with their research paper's acceptance at IJCAI 2025, a prestigious AI conference with a 19.3% acceptance rate. The paper introduces TRIDENT, an innovative framework that combines Multimodal Large Language Model (MLLM) embeddings and attribute smoothing for Compositional Zero-Shot Learning. The technology shows promising applications in fintech, particularly in: • Intelligent risk control: Analyzing multimodal data to detect fraud patterns more efficiently • Customer service: Enabling better understanding of complex user inquiries The framework addresses key challenges in AI, including background interference and limited semantic capture, demonstrating state-of-the-art performance across multiple datasets. This achievement reflects Qifu Technology's commitment to AI innovation and its strategic focus on R&D investment and academic collaborations.
Qifu Technology (NASDAQ: QFIN) e l'Università di Beijing Jiaotong hanno raggiunto un traguardo importante con l'accettazione del loro articolo di ricerca all'IJCAI 2025, una prestigiosa conferenza sull'intelligenza artificiale con un tasso di accettazione del 19,3%. L'articolo presenta TRIDENT, un innovativo framework che combina gli embedding di Modelli Linguistici Multimodali (MLLM) e l'attributo smoothing per l'Apprendimento Compositivo Zero-Shot. La tecnologia mostra applicazioni promettenti nel fintech, in particolare in: • Controllo intelligente del rischio: analisi di dati multimodali per rilevare schemi di frode in modo più efficiente • Servizio clienti: migliorare la comprensione di richieste complesse degli utenti Il framework affronta sfide chiave nell'IA, come le interferenze di background e la limitata cattura semantica, dimostrando prestazioni all'avanguardia su più set di dati. Questo risultato riflette l'impegno di Qifu Technology nell'innovazione AI e il suo focus strategico su investimenti in R&D e collaborazioni accademiche.
Qifu Technology (NASDAQ: QFIN) y la Universidad de Beijing Jiaotong han alcanzado un hito significativo con la aceptación de su artículo de investigación en IJCAI 2025, una prestigiosa conferencia de inteligencia artificial con una tasa de aceptación del 19,3%. El artículo presenta TRIDENT, un marco innovador que combina embeddings de Modelos de Lenguaje Multimodal (MLLM) y suavizado de atributos para el Aprendizaje Composicional Zero-Shot. La tecnología muestra aplicaciones prometedoras en fintech, especialmente en: • Control inteligente de riesgos: análisis de datos multimodales para detectar patrones de fraude de manera más eficiente • Atención al cliente: facilitando una mejor comprensión de consultas complejas de los usuarios El marco aborda desafíos clave en IA, incluyendo interferencias de fondo y captura semántica limitada, demostrando un rendimiento de vanguardia en múltiples conjuntos de datos. Este logro refleja el compromiso de Qifu Technology con la innovación en IA y su enfoque estratégico en inversión en I+D y colaboraciones académicas.
Qifu Technology(NASDAQ: QFIN)와 베이징 교통대학교는 AI 분야에서 권위 있는 학회인 IJCAI 2025에 연구 논문이 채택되는 중대한 성과를 이루었습니다. IJCAI 2025의 논문 채택률은 19.3%입니다. 해당 논문에서는 TRIDENT라는 혁신적인 프레임워크를 소개하는데, 이는 다중모달 대형 언어 모델(MLLM) 임베딩과 속성 스무딩을 결합한 조합적 제로샷 학습 기법입니다. 이 기술은 핀테크 분야에서 특히 다음과 같은 응용 가능성을 보입니다: • 지능형 리스크 관리: 다중모달 데이터를 분석하여 사기 패턴을 더욱 효율적으로 탐지 • 고객 서비스: 복잡한 사용자 문의를 더 잘 이해할 수 있도록 지원 이 프레임워크는 배경 간섭과 제한된 의미 포착 등 AI의 주요 문제를 해결하며, 여러 데이터셋에서 최첨단 성능을 입증했습니다. 이번 성과는 Qifu Technology의 AI 혁신에 대한 의지와 연구개발 투자 및 학술 협력에 대한 전략적 집중을 반영합니다.
Qifu Technology (NASDAQ : QFIN) et l'Université Jiaotong de Pékin ont franchi une étape importante avec l'acceptation de leur article de recherche à l'IJCAI 2025, une conférence prestigieuse en intelligence artificielle avec un taux d'acceptation de 19,3 %. L'article présente TRIDENT, un cadre innovant qui combine les embeddings de Modèles de Langage Multimodal (MLLM) et le lissage d'attributs pour l'apprentissage compositional Zero-Shot. Cette technologie montre des applications prometteuses dans la fintech, notamment en : • Contrôle intelligent des risques : analyse des données multimodales pour détecter plus efficacement les schémas de fraude • Service client : meilleure compréhension des requêtes complexes des utilisateurs Le cadre répond aux défis clés de l'IA, tels que les interférences de fond et la capture sémantique limitée, démontrant des performances de pointe sur plusieurs ensembles de données. Cette réussite reflète l'engagement de Qifu Technology envers l'innovation en IA et son orientation stratégique vers l'investissement en R&D et les collaborations académiques.
Qifu Technology (NASDAQ: QFIN) und die Beijing Jiaotong University haben einen bedeutenden Meilenstein erreicht: Ihre Forschungsarbeit wurde auf der IJCAI 2025, einer renommierten KI-Konferenz mit einer Annahmequote von 19,3%, akzeptiert. Das Papier stellt TRIDENT vor, ein innovatives Framework, das Multimodale Large Language Model (MLLM)-Embeddings und Attribut-Glättung für Compositional Zero-Shot Learning kombiniert. Die Technologie zeigt vielversprechende Anwendungen im Fintech-Bereich, insbesondere bei: • Intelligenter Risikokontrolle: Analyse multimodaler Daten zur effizienteren Erkennung von Betrugsmustern • Kundendienst: Verbesserung des Verständnisses komplexer Nutzeranfragen Das Framework adressiert zentrale Herausforderungen der KI, wie Hintergrundstörungen und begrenzte semantische Erfassung, und demonstriert erstklassige Leistungen über mehrere Datensätze hinweg. Dieser Erfolg spiegelt das Engagement von Qifu Technology für KI-Innovation sowie den strategischen Fokus auf F&E-Investitionen und akademische Zusammenarbeit wider.
Positive
  • None.
Negative
  • None.

Insights

Qifu's AI research breakthrough shows innovation potential but offers uncertain timeline for commercial implementation in their fintech operations.

The acceptance of Qifu's research paper at IJCAI 2025 represents a significant technical achievement in a highly competitive field, with only 19.3% of submissions making the cut. The TRIDENT framework they've developed tackles a fundamental AI challenge: identifying novel combinations of attributes and objects using existing knowledge.

The technical innovations are particularly relevant to fintech applications. By combining Multimodal Large Language Model embeddings with specialized modules like Feature Adaptive Aggregation, TRIDENT can filter background noise and extract detailed features from complex data—capabilities that translate directly to two critical fintech operations:

  • Enhanced fraud detection through analysis of multimodal data (transaction patterns combined with user profiles)
  • More precise understanding of complex customer inquiries, enabling better service automation

What makes this development noteworthy is how it addresses specific limitations in current AI systems: background interference, limited semantic capture, and overconfidence in familiar patterns. These improvements could allow Qifu to identify emerging fraud patterns that traditional models might miss.

However, the path from academic research to deployed systems involves substantial engineering work. The press release doesn't specify implementation timelines or quantify expected operational improvements, creating uncertainty about when these innovations might impact business performance.

SHANGHAI, May 7, 2025 /PRNewswire/ -- China's leading fintech company Qifu Technology ( NASDAQ: QFIN; HKEX: 3660) and Beijing Jiaotong University have jointly achieved a significant milestone as their paper, Leveraging MLLM Embeddings and Attribute Smoothing for Compositional Zero-Shot Learning, has been accepted by the International Joint Conference on Artificial Intelligence(IJCAI)2025, a premier international conference in artificial intelligence.

With an acceptance rate of merely 19.3% — selecting 1,042 out of 5,404 submissions — IJCAI is recognized as one of the most prestigious AI conferences globally and is listed as a Class-A event by the China Computer Federation (CCF).

The research focuses on Compositional Zero-Shot Learning, aiming to identify novel combinations of attributes and objects using existing knowledge. Overcoming traditional challenges such as background interference, limited semantic capture in word embeddings, and overconfidence in known combinations, the team introduced an innovative framework named TRIDENT. By integrating Multimodal Large Language Model (MLLM) embeddings and attribute smoothing, TRIDENT utilizes modules like Feature Adaptive Aggregation (FAA) to mitigate background noise, learns conditional masks for detailed feature extraction, and leverages MLLM's hidden states to enhance semantic representation. This approach has demonstrated state-of-the-art performance across multiple datasets, offering new solutions for fields including image recognition and content understanding.

In fintech area, TRIDENT shows great potential. In intelligent risk control, it analyzes multimodal data—such as transaction behaviors and user profiles—to detect emerging fraud patterns faster than traditional models, improving assessment accuracy and reducing losses. In customer service, the framework enables more precise understanding of complex user inquiries, providing personalized and efficient support.

This achievement underscores Qifu Technology's commitment to AI innovation. By increasing R&D investment and deepening collaborations with academic institutions, the company aims to drive further advancements in AI applications, contributing to industry growth and social progress.

Cision View original content:https://www.prnewswire.com/news-releases/qifu-technologys-paper-accepted-by-ijcai-2025-using-mllm-to-pave-new-path-in-fintech-302449711.html

SOURCE Qifutech

FAQ

What is the significance of QFIN's IJCAI 2025 paper acceptance?

The acceptance of QFIN's paper at IJCAI 2025 is significant as it was among only 19.3% of submissions accepted (1,042 out of 5,404) at this prestigious Class-A AI conference, demonstrating the company's AI research capabilities.

How does Qifu Technology's TRIDENT framework improve fintech operations?

TRIDENT improves fintech operations by enhancing fraud detection through multimodal data analysis and enabling more precise understanding of customer inquiries for better service delivery.

What are the main features of QFIN's TRIDENT AI framework?

TRIDENT features MLLM embeddings, attribute smoothing, Feature Adaptive Aggregation for background noise reduction, and conditional masks for detailed feature extraction, improving semantic representation in AI applications.

What is the collaboration between Qifu Technology and Beijing Jiaotong University?

Qifu Technology and Beijing Jiaotong University collaborated on developing the TRIDENT framework for Compositional Zero-Shot Learning, resulting in a paper accepted at IJCAI 2025.
Qifu Technology

NASDAQ:QFIN

QFIN Rankings

QFIN Latest News

QFIN Stock Data

5.66B
137.79M
1.02%
70.38%
2.32%
Credit Services
Financial Services
Link
China
Shanghai