STOCK TITAN

Datadog AI Research Launches New Open-Weights AI Foundation Model and Observability Benchmark

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
AI

Datadog (NASDAQ: DDOG) has launched two significant AI research initiatives through its Datadog AI Research division. The first is Toto, an open-source time series foundation model (TSFM) trained on Datadog's internal telemetry metrics, designed specifically for observability. Toto offers zero-shot forecasting capabilities for anomaly detection and capacity planning, outperforming existing TSFMs.

The second initiative is BOOM, which becomes the largest public benchmark of observability metrics, featuring 350 million observations across 2,807 real-world multivariate series. Both projects are immediately available under a permissive license, aiming to advance observability forecasting capabilities in the broader research community.

Chief Scientist Ameet Talwalkar emphasized that these launches mark the beginning of continuous AI project releases, with plans to collaborate with applied AI teams to develop practical customer solutions.

Datadog (NASDAQ: DDOG) ha lanciato due importanti iniziative di ricerca sull'IA tramite la sua divisione Datadog AI Research. La prima è Toto, un modello di base open-source per serie temporali (TSFM) addestrato sulle metriche telemetriche interne di Datadog, progettato specificamente per l'osservabilità. Toto offre capacità di previsione zero-shot per il rilevamento delle anomalie e la pianificazione della capacità, superando i modelli TSFM esistenti.

La seconda iniziativa è BOOM, che rappresenta il più grande benchmark pubblico di metriche di osservabilità, con 350 milioni di osservazioni distribuite su 2.807 serie multivariate reali. Entrambi i progetti sono immediatamente disponibili sotto una licenza permissiva, con l'obiettivo di migliorare le capacità di previsione nell'osservabilità all'interno della comunità di ricerca più ampia.

Lo scienziato capo Ameet Talwalkar ha sottolineato che questi lanci rappresentano l'inizio di un flusso continuo di progetti IA, con l'intenzione di collaborare con team di IA applicata per sviluppare soluzioni pratiche per i clienti.

Datadog (NASDAQ: DDOG) ha lanzado dos importantes iniciativas de investigación en IA a través de su división Datadog AI Research. La primera es Toto, un modelo base de series temporales (TSFM) de código abierto entrenado con las métricas de telemetría interna de Datadog, diseñado específicamente para la observabilidad. Toto ofrece capacidades de pronóstico zero-shot para la detección de anomalías y la planificación de capacidad, superando a los TSFM existentes.

La segunda iniciativa es BOOM, que se convierte en el mayor benchmark público de métricas de observabilidad, con 350 millones de observaciones repartidas en 2,807 series multivariantes del mundo real. Ambos proyectos están disponibles de inmediato bajo una licencia permisiva, con el objetivo de avanzar en las capacidades de pronóstico de observabilidad en la comunidad investigadora en general.

El científico jefe Ameet Talwalkar enfatizó que estos lanzamientos marcan el inicio de una serie continua de proyectos de IA, con planes de colaborar con equipos de IA aplicada para desarrollar soluciones prácticas para los clientes.

Datadog (NASDAQ: DDOG)는 Datadog AI Research 부서를 통해 두 가지 중요한 AI 연구 이니셔티브를 시작했습니다. 첫 번째는 Toto로, Datadog의 내부 텔레메트리 메트릭을 기반으로 학습된 오픈 소스 시계열 기초 모델(TSFM)로, 관측성(Observability)을 위해 특별히 설계되었습니다. Toto는 이상 탐지 및 용량 계획을 위한 제로샷 예측 기능을 제공하며 기존 TSFM보다 뛰어납니다.

두 번째 이니셔티브는 BOOM으로, 2,807개의 실제 다변량 시계열에 걸쳐 3억 5천만 개의 관측치를 포함하는 최대 규모의 공개 관측성 메트릭 벤치마크입니다. 두 프로젝트 모두 관대 한 라이선스 하에 즉시 이용 가능하며, 광범위한 연구 커뮤니티 내에서 관측성 예측 기능을 발전시키는 것을 목표로 합니다.

수석 과학자 Ameet Talwalkar는 이번 출시가 지속적인 AI 프로젝트 발표의 시작임을 강조하며, 실용적인 고객 솔루션 개발을 위해 응용 AI 팀과 협력할 계획임을 밝혔습니다.

Datadog (NASDAQ: DDOG) a lancé deux initiatives majeures de recherche en IA via sa division Datadog AI Research. La première est Toto, un modèle fondation open-source pour séries temporelles (TSFM) entraîné sur les métriques de télémétrie internes de Datadog, conçu spécifiquement pour l'observabilité. Toto offre des capacités de prévision zero-shot pour la détection d'anomalies et la planification de capacité, surpassant les TSFM existants.

La seconde initiative est BOOM, qui devient le plus grand benchmark public de métriques d'observabilité, avec 350 millions d'observations réparties sur 2 807 séries multivariées réelles. Les deux projets sont immédiatement disponibles sous une licence permissive, visant à faire progresser les capacités de prévision en observabilité au sein de la communauté de recherche plus large.

Le scientifique en chef Ameet Talwalkar a souligné que ces lancements marquent le début d'une série continue de projets IA, avec des plans de collaboration avec des équipes d'IA appliquée pour développer des solutions pratiques pour les clients.

Datadog (NASDAQ: DDOG) hat zwei bedeutende KI-Forschungsinitiativen über seine Datadog AI Research-Abteilung gestartet. Die erste ist Toto, ein Open-Source-Grundlagenmodell für Zeitreihen (TSFM), das auf den internen Telemetriedaten von Datadog trainiert wurde und speziell für Observability entwickelt wurde. Toto bietet Zero-Shot-Vorhersagefunktionen für Anomalieerkennung und Kapazitätsplanung und übertrifft bestehende TSFMs.

Die zweite Initiative ist BOOM, das größte öffentliche Benchmark für Observability-Metriken mit 350 Millionen Beobachtungen über 2.807 reale multivariate Zeitreihen. Beide Projekte sind sofort unter einer großzügigen Lizenz verfügbar und zielen darauf ab, die Vorhersagefähigkeiten im Bereich Observability in der breiteren Forschungsgemeinschaft voranzutreiben.

Chef-Wissenschaftler Ameet Talwalkar betonte, dass diese Veröffentlichungen den Beginn kontinuierlicher KI-Projektveröffentlichungen markieren, mit Plänen, mit angewandten KI-Teams zusammenzuarbeiten, um praktische Kundenlösungen zu entwickeln.

Positive
  • Launch of Toto, an innovative open-source foundation model achieving state-of-the-art performance in time series forecasting
  • Introduction of BOOM, the largest public benchmark for observability metrics with 350 million observations
  • Free availability and permissive licensing of both tools for the research community
  • Strategic collaboration between research and product teams to develop practical customer solutions
Negative
  • None.

Insights

Datadog's new open-source Toto model and BOOM benchmark represent significant AI advancements in time series forecasting for observability.

Datadog has made a strategic move by launching Datadog AI Research with two significant contributions to the AI community. The first release, Toto, is particularly notable as it represents the first open-weights foundation model specifically designed for observability data. This positions Datadog at the forefront of specialized AI for time series analysis.

What makes Toto technically impressive is that it achieves state-of-the-art performance compared to existing Time Series Foundation Models (TSFMs), despite being trained exclusively on Datadog's internal telemetry metrics. The zero-shot forecasting capability is a technical breakthrough that solves a critical scaling challenge in cloud monitoring—the ability to detect anomalies and plan capacity instantly across billions of ephemeral time series without per-series tuning.

The second release, BOOM, establishes what is now the largest public benchmark of observability metrics with 350 million observations across 2,807 real-world multivariate series. This benchmark will significantly accelerate research in this domain by providing a standardized testing ground that captures the unique characteristics of production telemetry data—scale, sparsity, spikes, and cold-start issues.

From a research perspective, Datadog's decision to open-source these models under a permissive license demonstrates a commitment to collaborative innovation. This approach not only benefits the broader technical community but also positions Datadog to harness collective improvements to their technology foundation. The involvement of Chief Scientist Ameet Talwalkar suggests Datadog is building serious research capabilities while maintaining focus on translating theoretical advances into practical customer solutions.

Toto-an open-weights, zero-shot, time series foundation model-and BOOM, the largest public benchmark of observability metrics, are the first launches from Datadog AI Research

New York, New York--(Newsfile Corp. - May 21, 2025) -  Datadog, Inc. (NASDAQ: DDOG), the monitoring and security platform for cloud applications, today unveiled the first two launches from Datadog AI Research, which is tackling cutting-edge research challenges that are firmly rooted in real-world problems within cloud observability and security. Datadog AI Research is actively contributing to the broader research community by publishing findings and open-sourcing model artifacts.

The initial releases from Datadog AI Research are Toto and BOOM. Toto is the first open-source foundation model focused on observability. Time series foundation models (TSFMs) are to time series what LLMs are to language. A type of AI model trained on massive datasets that can be adapted to a wide range of downstream tasks, foundation models learn general patterns and can be fine-tuned for various applications.

Toto is an open-weights model that is trained with observability data sourced exclusively from Datadog's own internal telemetry metrics, which achieves state-of-the-art performance by a wide margin compared to all other existing TSFMs. Its zero-shot forecasting will enable instant anomaly detection and capacity planning with no per-series tuning, which is critical when monitoring billions of ephemeral time series. While existing TSFMs struggle with telemetry data, Toto heightens performance-not only for observability data but for time series forecasting more broadly-and is freely available.

BOOM introduces a time series benchmark that focuses specifically on observability metrics, which contain their own challenging and unique characteristics compared to other typical time series. It instantly becomes the largest public benchmark of observability metrics, providing 350 million observations across 2,807 real-world multivariate series to capture the scale, sparsity, spikes and cold-start issues unique to production telemetry. BOOM is an actively maintained resource for the community and will allow researchers to advance their forecasting models.

"Today marks the launch of our first open-source foundation model and we expect to continuously release AI projects through Datadog AI Research," said Ameet Talwalkar, Chief Scientist at Datadog. "The lab offers an exciting opportunity to develop research ideas and build prototypes that will contribute to the community. We will also collaborate with applied AI teams to build tools that will solve customer problems and transform how engineers work."

Collaboration between Datadog AI Research and Datadog's product and engineering teams will help translate research advances, like Toto and BOOM, into tangible benefits for Datadog customers.

Toto and BOOM are immediately downloadable under a permissive license and Datadog invites the research and the OSS communities to push observability forecasting forward with these open-source projects.

To learn more about Datadog AI Research, please visit: https://www.datadoghq.com/blog/ai/toto-boom-unleashed/.

About Datadog

Datadog is the observability and security platform for cloud applications. Our SaaS platform integrates and automates infrastructure monitoring, application performance monitoring, log management, user experience monitoring, cloud security and many other capabilities to provide unified, real-time observability and security for our customers' entire technology stack. Datadog is used by organizations of all sizes and across a wide range of industries to enable digital transformation and cloud migration, drive collaboration among development, operations, security and business teams, accelerate time to market for applications, reduce time to problem resolution, secure applications and infrastructure, understand user behavior and track key business metrics.

Forward-Looking Statements

This press release may include certain "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, or the Securities Act, and Section 21E of the Securities Exchange Act of 1934, as amended including statements on the benefits of new products and features. These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we have made. Actual results may differ materially from those described in the forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and factors that are beyond our control, including those risks detailed under the caption "Risk Factors" and elsewhere in our Securities and Exchange Commission filings and reports, including the Quarterly Report on Form 10-K filed with the Securities and Exchange Commission on May 6, 2025, as well as future filings and reports by us. Except as required by law, we undertake no duty or obligation to update any forward-looking statements contained in this release as a result of new information, future events, changes in expectations or otherwise.

Contact
Dan Haggerty
press@datadoghq.com

To view the source version of this press release, please visit https://www.newsfilecorp.com/release/252742

FAQ

What is Datadog's Toto AI model and how does it work?

Toto is an open-weights time series foundation model (TSFM) developed by Datadog that enables zero-shot forecasting for anomaly detection and capacity planning. It's trained on Datadog's internal telemetry metrics and outperforms existing TSFMs in observability data analysis.

What is BOOM in Datadog's new AI research launch?

BOOM is the largest public benchmark of observability metrics, containing 350 million observations across 2,807 real-world multivariate series. It helps researchers advance their forecasting models by providing real-world telemetry data.

How can developers access Datadog's new AI tools?

Both Toto and BOOM are immediately downloadable under a permissive license, allowing developers and researchers to freely access and use these tools for observability forecasting.

What are the key benefits of DDOG's new AI research initiatives?

The initiatives provide state-of-the-art performance in time series forecasting, enable instant anomaly detection without per-series tuning, and offer the largest public benchmark for observability metrics, advancing both research and practical applications.
Datadog, Inc.

NASDAQ:DDOG

DDOG Rankings

DDOG Latest News

DDOG Stock Data

40.51B
311.25M
2.9%
88.35%
3.77%
Software - Application
Services-prepackaged Software
Link
United States
NEW YORK