IBM Delivers New Quantum Processors, Software, and Algorithm Breakthroughs on Path to Advantage and Fault Tolerance
IBM (NYSE: IBM) unveiled new quantum processors, software, and fabrication milestones on Nov 12, 2025, advancing its timeline for quantum advantage by end of 2026 and fault-tolerant computing by 2029. Key hardware: IBM Quantum Nighthawk (120 qubits, 218 next-gen tunable couplers) targeting circuits with 30% more complexity and support for up to 5,000 two-qubit gates initially with plans to reach 7,500 (2026), 10,000 (2027) and 15,000 gates (2028) on larger systems. Software: Qiskit updates claim a 24% accuracy lift for dynamic circuits and >100x lower cost for HPC-powered error mitigation. IBM also announced Quantum Loon, demonstration of fault-tolerant components and qLDPC decoding <480 ns, completed one year ahead of schedule, and a move to 300mm wafer fabrication that doubled R&D speed and boosted chip physical complexity 10x.
IBM (NYSE: IBM) ha svelato nuovi processori quantistici, software e traguardi di fabbricazione il 12 novembre 2025, avanzando la sua tabella di marcia verso un vantaggio quantistico entro la fine del 2026 e un calcolo tollerante agli errori entro il 2029. Componenti hardware chiave: IBM Quantum Nighthawk (120 qubit, 218 accoppiatori modulabili di nuova generazione) rivolti a circuiti con il 30% di complessità in più e supporto iniziale fino a 5.000 gate a due qubit, con piani per raggiungere 7.500 (2026), 10.000 (2027) e 15.000 gate (2028) su sistemi di maggiori dimensioni. Software: gli aggiornamenti di Qiskit dichiarano un incremento di accuratezza del 24% per circuiti dinamici e un costo inferiore di più di 100 volte per l’ mitigazione degli errori basata su HPC. IBM ha inoltre annunciato Quantum Loon, la dimostrazione di componenti tolleranti agli errori e decodifica qLDPC <480 ns, completata con un anno di anticipo, e il passaggio alla fabbricazione su wafer da 300 mm che ha raddoppiato la velocità di R&D e aumentato la complessità fisica dei chip di 10x.
IBM (NYSE: IBM) presentó nuevos procesadores cuánticos, software y hitos de fabricación el 12 de noviembre de 2025, acelerando su hoja de ruta para la ventaja cuántica a finales de 2026 y la computación tolerante a fallos para 2029. Hardware clave: IBM Quantum Nighthawk (120 qubits, 218 acopladores tunables de nueva generación) dirigido a circuitos con un 30% más de complejidad y soporte inicial para hasta 5,000 puertas de dos qubits, con planes para alcanzar 7,500 (2026), 10,000 (2027) y 15,000 puertas (2028) en sistemas de mayor tamaño. Software: las actualizaciones de Qiskit afirman un aumento de precisión del 24% para circuitos dinámicos y un costo > 100x menor para la mitigación de errores impulsada por HPC. IBM también anunció Quantum Loon, demostración de componentes tolerantes a errores y decodificación qLDPC <480 ns, completada con un año de adelanto, y una transición a fabricación en obleas de 300 mm que duplicó la velocidad de I+D y elevó la complejidad física de los chips 10x.
IBM (NYSE: IBM)은 2025년 11월 12일 새로운 양자 프로세서, 소프트웨어 및 제조 이정표를 공개하며 2026년 말까지 양자 우위와 2029년까지 오류 허용 계산 타임라인을 앞당겼습니다. 주요 하드웨어: IBM Quantum Nighthawk (120 큐비트, 차세대 218개 tunable 커플러)로 복잡성 30% 증가의 회로를 목표로 하며 초기에는 두 큐비트 게이트 5,000개를 지원하고 2026년 7,500개, 2027년 10,000개, 2028년 15,000개 게이트를 더 큰 시스템에서 달성할 계획입니다. 소프트웨어: Qiskit 업데이트는 동적 회로에 대해 정확도 24% 향상과 HPC 기반 오류 완화의 비용을 100배 이상 감소를 주장합니다. IBM은 또한 Quantum Loon을 발표했고, 오류 허용 구성요소의 시연과 qLDPC 디코딩 <480 ns를 공개 일정보다 1년 앞당겨 완료했으며, 300mm 웨이퍼 제조로 연구개발 속도가 두 배, 칩의 물리적 복잡도는 10배 증가했습니다.
IBM (NYSE: IBM) a dévoilé de nouveaux processeurs quantiques, des logiciels et des jalons de fabrication le 12 novembre 2025, faisant avancer sa feuille de route vers un avantage quantique d'ici fin 2026 et un calcul tolérant aux pannes d'ici 2029. Matériel clé : IBM Quantum Nighthawk (120 qubits, 218 coupleurs modulables de nouvelle génération) visant des circuits avec une complexité accrue de 30% et un support initial jusqu'à 5 000 portes à deux qubits, avec des plans pour atteindre 7 500 (2026), 10 000 (2027) et 15 000 portes (2028) sur des systèmes plus vastes. Logiciel : les mises à jour Qiskit revendiquent une amélioration de précision de 24% pour les circuits dynamiques et un coût 100x inférieur pour l’atténuation des erreurs alimentée par HPC. IBM a également annoncé Quantum Loon, démonstration de composants tolérants aux pannes et décodage qLDPC <480 ns, achevé un an avant le calendrier, et une transition vers une fabrication sur wafer de 300 mm qui a doublé la vitesse de RD et multiplié par 10 la complexité physique des puces.
IBM (NYSE: IBM) hat am 12. November 2025 neue Quantenprozessoren, Software und Fertigungsmeilensteine vorgestellt und damit seinen Zeitplan für Quantenvorteil bis Ende 2026 und fehler-tolerierendes Rechnen bis 2029 vorangetrieben. Wichtige Hardware: IBM Quantum Nighthawk (120 Qubits, 218 Next-Gen-tunable Koppler) mit dem Ziel, Schaltungen mit 30% mehr Komplexität zu unterstützen und anfänglich bis zu 5.000 Zwei-Qubit-Gates zu unterstützen, mit Plänen, 2026 7.500, 2027 10.000 und 2028 15.000 Gates auf größeren Systemen zu erreichen. Software: Qiskit-Updates melden einen 24%-igen Genauigkeitsanstieg für dynamische Schaltungen und mehr als 100x geringere Kosten für HPC-gestützte Fehlerrmitlung. IBM kündigte außerdem Quantum Loon an, Demonstrationen fehlertoleranter Komponenten und qLDPC-Dekodierung <480 ns, eine ein Jahr früher als geplant abgeschlossen, sowie eine Umstellung auf 300-mm-Wafer-Fertigung, die die F&E-Geschwindigkeit verdoppelte und die Chip-physikalische Komplexität um das Zehnfache steigerte.
IBM (NYSE: IBM) كشفت عن معالجات كمومية جديدة وبرامج ومعالم تصنيع في 12 نوفمبر 2025، مما يسرّع جدولا زمنيا لـ أفضلية كمومية بنهاية 2026 و حوسبة تتحمل الأخطاء بحلول 2029. الأجهزة الرئيسية: IBM Quantum Nighthawk (120 كيوبات، 218 موصل قابل للضبط من الجيل الجديد) يستهدف دوائر ذات تعقيد أعلى بنسبة 30% ويدعم مبدئياً حتى 5,000 باب ثنائي-كيوبت مع خطط للوصول إلى 7,500 (2026)، 10,000 (2027) و15,000 باب (2028) في أنظمة أكبر. البرمجيات: تحديثات Qiskit تدّعي زيادة الدقة بـ 24% للدوائر الديناميكية وتكاليف أقل > 100x لدعم التخفيف من الأخطاء بواسطة الحوسبة عالية الأداء. كما أعلنت IBM عن Quantum Loon، عرض لمكونات تتحمل الأخطاء و ترميز qLDPC <480 ns، مكتملة قبل موعدها بسنة، والتحول إلى تصنيع على شرائح Wafer بقياس 300 مم الذي ضاعف سرعة البحث والتطوير ورفع التعقيد الفيزيائي للشرائح 10 أضعاف.
- 120-qubit Nighthawk with 218 next-gen couplers
- Circuits with 30% more complexity vs prior processor
- 5,000 two-qubit gate capacity initially; roadmap to 15,000 by 2028
- Qiskit dynamic circuits deliver 24% accuracy improvement
- HPC error mitigation reduces extraction cost by >100x
- qLDPC decoding in <480 ns, achieved one year early
- Shift to 300mm fabrication doubled R&D speed and 10x chip complexity
- None.
Insights
IBM reports multi-pronged, measurable advances toward near-term quantum advantage and longer-term fault tolerance.
IBM highlights engineering and software steps that together raise computational scope: a 120-qubit Nighthawk processor with increased couplers to run circuits with
These developments target both near-term advantage and fault tolerance. The experimental Quantum Loon processor demonstrates multi-layer routing and qubit reset capability, while real-time decoding with qLDPC codes under
Dependencies and risks include validating claimed performance under peer review and independent reproduction, success of community verification of advantage through the open tracker, and integration of HPC error mitigation into real workloads. Watch for public, independently reproduced benchmark results confirming advantage by
- IBM Quantum Nighthawk: processor built for quantum advantage will deliver circuits with 30 percent more complexity
- Together with partners, IBM contributes three experiments to open, community quantum advantage tracker, with results comparable to leading classical simulation methods
- New Qiskit capabilities show 24 percent increase in accuracy with dynamic circuits and decreased cost of extracting accurate results by over 100 times with HPC-powered error mitigation.
- IBM Quantum Loon demonstrates all hardware elements of fault-tolerant quantum computing
- Efficient quantum error correction decoding achieved with 10 times speedup over current leading approach1 – completed one year ahead of schedule
- IBM doubles development speed with shift to 300mm wafer fabrication facility while boosting the physical complexity of quantum chips by 10 times for fault-tolerant error correction roadmap
"There are many pillars to bringing truly useful quantum computing to the world," said Jay Gambetta, Director of IBM Research and IBM Fellow. "We believe that IBM is the only company that is positioned to rapidly invent and scale quantum software, hardware, fabrication, and error correction to unlock transformative applications. We are thrilled to announce many of these milestones today."
IBM Quantum Computers Built to Scale Advantage
IBM is unveiling IBM Quantum Nighthawk, its most advanced quantum processor yet and designed with an architecture to complement high-performing quantum software to deliver quantum advantage next year: the point at which a quantum computer can solve a problem better than all classical-only methods.
IBM Nighthawk is expected to be delivered to IBM users by the end of 2025, and will offer:
- 120 qubits linked together with 218 next-generation tunable couplers to their four nearest neighbors in a square lattice, an increase of over 20 percent more couplers compared to IBM Quantum Heron.
- This increased qubit connectivity will allow users to accurately execute circuits with 30 percent more complexity than on IBM's previous processor while maintaining low error rates.
- This architecture will enable users to explore more computationally demanding problems that require up to 5,000 two-qubit gates, the fundamental entangling operations critical for quantum computation.
IBM expects future iterations of Nighthawk to deliver up to 7,500 gates by the end of 2026 and then up to 10,000 gates in 2027. By 2028, Nighthawk-based systems could support up to 15,000 two-qubit gates enabled by 1,000 or more connected qubits extended through long-range couplers first demonstrated on IBM experimental processors last year.
IBM anticipates that the first cases of verified quantum advantage will be confirmed by the wider community by the end of 2026. To encourage their rigorous validation and push forward the best quantum and classical approaches, IBM, Algorithmiq, researchers at the Flatiron Institute, and BlueQubit are contributing new results to an open, community-led quantum advantage tracker to systematically monitor and verify emerging demonstrations of advantage.
Today, the community tracker supports three experiments for quantum advantage across observable estimation, variational problems, and problems with efficient classical verification. IBM encourages the community to contribute to the tracker and push a back-and-forth with the best classical methods.
"I'm proud that our team at Algorithmiq is leading one of the three projects in the new quantum advantage tracker. The model we designed explores regimes so complex that it challenges all state-of-the-art classical methods tested so far," said Sabrina Maniscalco, CEO and co-founder, Algorithmiq. "We are seeing promising experimental results, and independent simulations from researchers at the Flatiron Institute validate its classical hardness. These are only the first steps – quantum advantage will take time to verify, and the tracker will let everyone follow that journey."
"BlueQubit is proud to support IBM's efforts to track quantum advantage claims and algorithms as quantum computers are entering a regime beyond classical," said Hayk Tepanyan, CTO and co-founder, BlueQubit. "Through our work around peaked circuits, we are excited to help formalize instances where quantum computers are starting to outperform classical computers by orders of magnitude."
To pursue verified quantum advantage on breakthrough quantum hardware, developers need to be able to highly control their circuits and use high-performance classical computers (HPC) to mitigate the errors that arise in computation.
Qiskit is the world's best-performing quantum software stack, developed by IBM. It is now giving developers more control than ever before by scaling dynamic circuit capabilities that deliver a 24 percent increase in accuracy at the scale of 100+ qubits. IBM is also extending Qiskit with a new execution model that enables fine grain control and a C-API, unlocking HPC-accelerated error mitigation capabilities that decreases the cost of extracting accurate results by more than 100 times.
As quantum computers mature, the global quantum community is expanding to HPC and scientific communities. IBM is delivering a C++ interface to Qiskit, powered by a C-API, to enable users to program quantum natively in existing HPC environments. IBM continues to lead the way in advanced circuit execution capabilities including dynamic circuits and increasing control over circuit execution for error mitigation.
By 2027, IBM plans to extend Qiskit with computational libraries in areas such as machine learning and optimization to better solve fundamental physical and chemistry challenges such as differential equations and Hamiltonian simulations.
IBM Delivers Building Blocks Towards Fault-Tolerant Quantum Computing
In a parallel path, IBM is rapidly delivering milestones towards building the world's first large-scale, fault-tolerant quantum computer by 2029.
The company is announcing IBM Quantum Loon, its experimental processor that, for the first time, shows that IBM has demonstrated all the key processor components needed for fault-tolerant quantum computing. IBM Loon will validate a new architecture to implement and scale the components needed for practical, high-efficiency quantum error correction. IBM has already demonstrated the breakthrough features that will be incorporated into Loon, including the introduction of multiple high-quality, low-loss routing layers to provide pathways for longer, on-chip connections (or "c-couplers") that go beyond nearest-neighbor couplers and physically link distant qubits together on the same chip, as well as technologies to reset qubits between computations.
Delivering on another key pillar of fault-tolerant quantum computing, IBM has proven it is possible to use classical computing hardware to accurately decode errors in real-time (less than 480 nanoseconds) using qLDPC codes. This engineering feat has been achieved a full year ahead of schedule. Together with Loon, this demonstrates the cornerstones needed to scale qLDPC codes on high-speed, high-fidelity superconducting qubits which form the core of IBM quantum computers.
IBM Scales Fabrication to 300mm Facilities to Accelerate Quantum Wafer Development
As IBM scales its quantum computers, it is announcing the primary fabrication of its quantum processor wafers is being undertaken at an advanced 300mm wafer fabrication facility at the Albany NanoTech Complex in
State-of-the-art semiconductor tooling and always-on capabilities within this facility have already accelerated the speed at which IBM can learn from, improve, and expand the capabilities of its quantum processors; allowing the company to increase their qubit connectivity, density, and performance. To-date, IBM has been able to:
- Double the speed of its research and development efforts by cutting the time needed to build each new processor by at least half;
- Achieve a ten-fold increase in the physical complexity of its quantum chips; and,
- Enable multiple designs to be researched and explored in parallel.
- As compared to recent approach here: https://arxiv.org/abs/2510.25213
About IBM
IBM is a leading global hybrid cloud and AI, and business services provider, helping clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Thousands of governments and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM's hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM's breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM's legendary commitment to trust, transparency, responsibility, inclusivity and service.
For more information, visit https://research.ibm.com.
Media Contact:
Erin Angelini
IBM Communications
Edlehr@us.ibm.com
Chris Nay
IBM Communications
cnay@us.ibm.com
View original content to download multimedia:https://www.prnewswire.com/news-releases/ibm-delivers-new-quantum-processors-software-and-algorithm-breakthroughs-on-path-to-advantage-and-fault-tolerance-302612409.html
SOURCE IBM