WiMi Unveils New Efficient Quantum Random Access Memory Technology
WiMi Hologram Cloud (NASDAQ: WIMI) has announced a breakthrough in quantum computing with its new Quantum Random Access Memory (QRAM) technology. The innovative QRAM offers constant-time data access (O(1) complexity) regardless of memory size, supporting both classical and quantum data storage.
The technology features advanced capabilities including quantum error correction, support for unknown quantum states, and a novel quantum address decoder using superconducting quantum interference devices (SQUIDs). The QRAM's dynamic storage capacity adapts to computational tasks through quantum parallelism, eliminating traditional RAM expansion bottlenecks.
This development is particularly significant for large-scale quantum computing, quantum machine learning applications, and future quantum internet infrastructure.
WiMi Hologram Cloud (NASDAQ: WIMI) ha annunciato una svolta nel calcolo quantistico con la sua nuova tecnologia di Quantum Random Access Memory (QRAM). Il QRAM innovativo offre accesso ai dati in tempo costante (complessità O(1)) indipendentemente dalla dimensione della memoria, supportando sia l'archiviazione di dati classici che quantistici.
La tecnologia presenta capacità avanzate tra cui correzione degli errori quantistici, supporto per stati quantistici sconosciuti e un nuovo decodificatore di indirizzo quantistico che utilizza dispositivi di interferenza quantistica superconduttivi (SQUID). La capacità di memorizzazione dinamica del QRAM si adatta ai compiti computazionali tramite il parallelismo quantistico, eliminando i colli di bottiglia tradizionali nell'espansione della RAM.
Questo sviluppo è particolarmente significativo per il calcolo quantistico su larga scala, le applicazioni di quantum machine learning e la futura infrastruttura di internet quantistico.
WiMi Hologram Cloud (NASDAQ: WIMI) ha anunciado un avance en la computación cuántica con su nueva tecnología de memoria de acceso aleatorio cuántica (QRAM). El QRAM innovador ofrece acceso a datos en tiempo constante (complejidad O(1)) sin importar el tamaño de la memoria, admitiendo tanto almacenamiento de datos clásicos como cuánticos.
La tecnología cuenta con capacidades avanzadas, entre ellas corrección de errores cuánticos, soporte para estados cuánticos desconocidos y un nuevo decodificador de direcciones cuánticas que utiliza dispositivos de interferencia cuántica (SQUIDs). La capacidad de almacenamiento dinámico del QRAM se adapta a las tareas computacionales mediante el paralelismo cuántico, eliminando cuellos de botella tradicionales de expansión de RAM.
Este desarrollo es particularmente significativo para la computación cuántica a gran escala, aplicaciones de aprendizaje automático cuántico y la futura infraestructura de Internet cuántico.
WiMi Hologram Cloud (NASDAQ: WIMI)가 새로운 양자 임의 접근 메모리(QRAM) 기술로 양자 계산의 획기적인 발전을 발표했습니다. 이 혁신적인 QRAM은 메모리 크기에 상관없이 상수 시간 데이터 접근(O(1) 복잡도))를 제공하며, 고전 데이터와 양자 데이터를 둘 다 저장할 수 있습니다.
이 기술은 양자 오误정정(양자 오류 수정)을 비롯해 알려지지 않은 양자 상태에 대한 지원, 초전도 양자 간섭 장치(SQUIDs)를 이용한 새로운 양자 주소 디코더를 포함한 고급 기능을 갖추고 있습니다. QRAM의 동적 저장 용량은 양자 병렬성을 통해 계산 작업에 맞게 조정되며, 전통적인 RAM 확장의 병목을 제거합니다.
이 발전은 대규모 양자 컴퓨팅, 양자 기계 학습 응용 및 미래 양자 인터넷 인프라에 특히 중요합니다.
WiMi Hologram Cloud (NASDAQ: WIMI) a annoncé une avancée dans l’informatique quantique avec sa nouvelle technologie de mémoire d’accès aléatoire quantique (QRAM). Le QRAM innovant offre un accès aux données en temps constant (complexité O(1)) quelle que soit la taille de la mémoire, prenant en charge le stockage de données classiques et quantiques.
La technologie présente des capacités avancées, notamment la correction d’erreurs quantiques, le support pour des états quantiques inconnus et un nouveau décodeur d’adresses quantiques utilisant des dispositifs d’interférence quantique supraconducteurs (SQUIDs). La capacité de stockage dynamique du QRAM s’adapte aux tâches computationnelles grâce au parallélisme quantique, éliminant les goulots d’étranglement traditionnels de l’extension de la RAM.
Ce développement est particulièrement significatif pour le calcul quantique à grande échelle, les applications d’apprentissage automatique quantique et l’infrastructure future d’Internet quantique.
WiMi Hologram Cloud (NASDAQ: WIMI) hat einen Durchbruch in der Quantenberechnung mit seiner neuen Quantum Random Access Memory (QRAM)-Technologie angekündigt. Die innovative QRAM bietet Zugriff auf Daten in konstanter Zeit (O(1)-Komplexität) unabhängig von der Speicherkapazität und unterstützt sowohl klassische als auch Quanten-Datenspeicherung.
Die Technologie verfügt über fortschrittliche Fähigkeiten, darunter Quantenfehlerrkorrektur, Unterstützung für unbekannte Quantenzustände und einen neuartigen Quantenadress-Decoder, der SQUIDs (superconducting quantum interference devices) verwendet. Die dynamische Speicherkapazität des QRAM passt sich durch Quantenparallelität zu Rechenaufgaben an und beseitigt herkömmliche RAM-Ausdehnungsengpässe.
Diese Entwicklung ist besonders bedeutsam für groß angelegte Quantenberechnungen, Anwendungen im Bereich Quantenmaschinenlernen und die zukünftige Quanteninternet-Infrastruktur.
WiMi Hologram Cloud (NASDAQ: WIMI) أعلنت عن اختراق في الحوسبة الكوانتية مع تقنيتها الجديدة للذاكرة ذات الوصول العشوائي الكوانتي (QRAM). توفر تقنية QRAM المبتكرة وصولاً إلى البيانات بزمن ثابت (تعقيد O(1)) بغض النظر عن حجم الذاكرة، وتدعم كل من تخزين البيانات الكلاسيكية والكمية.
تتميز التقنية بقدرات متقدمة بما في ذلك تصحيح الأخطاء الكمية، ودعم الحالات الكمية غير المعروفة، ومفسر عنوان كوانتي جديد يستخدم أجهزة التداخل الكوانتي فائقة التوصيل (SQUIDs). تتكيف سعة التخزين الديناميكية لـ QRAM مع المهام الحسابية من خلال التوازي الكوانتي، مما يزيل اختناقات توسيع RAM التقليدية.
هذا التطور ذو أهمية خاصة لـ الحوسبة الكوانتية واسعة النطاق، تطبيقات التعلم الآلي الكوانتي وبنية الإنترنت الكوانتية المستقبلية.
WiMi Hologram Cloud (NASDAQ: WIMI) 宣布在量子计算领域取得突破性进展,推出其新的量子随机存取存储器(QRAM) 技术。该创新的 QRAM 提供 无论内存大小如何都能实现常数时间的数据访问(O(1) 复杂度),支持经典数据和量子数据的存储。
该技术具备先进功能,包括 量子纠错、支持未知量子态,以及使用超导量子干涉装置(SQUIDs) 的新型量子地址解码器。QRAM 的动态存储容量可通过量子并行性适应计算任务,消除传统 RAM 扩展瓶颈。
这一发展对 大规模量子计算、量子机器学习应用,以及未来量子互联网基础设施具有重要意义。
- None.
- Technology is still in early development phase with no commercial implementation timeline
- Requires complex superconducting quantum interference devices (SQUIDs)
- Susceptible to quantum decoherence requiring constant error correction
Insights
WiMi's QRAM technology represents a significant quantum computing breakthrough with constant-time data access and hybrid classical-quantum storage capabilities.
WiMi's new Quantum Random Access Memory (QRAM) technology addresses a critical bottleneck in quantum computing infrastructure. The technology's O(1) time complexity for memory access represents a fundamental advancement over classical RAM, where access time increases with memory size. This constant-time access capability could dramatically accelerate quantum computing processes regardless of data volume.
The system's architecture, based on superconducting quantum interference devices (SQUIDs), enables two particularly valuable capabilities: dual storage of both classical and quantum data, and the preservation of quantum states during retrieval operations. This non-destructive measurement technique maintains quantum superposition states—a crucial requirement for practical quantum computing applications that need to preserve quantum coherence.
From a technical perspective, WiMi's implementation includes sophisticated quantum error correction mechanisms to combat decoherence, one of quantum computing's greatest challenges. The system's ability to dynamically adjust storage capacity through quantum parallelism also represents a significant advance over the fixed expansion requirements of classical memory systems.
While quantum computing remains in relatively early development, memory systems like QRAM are essential infrastructure components that could accelerate practical applications. The technology appears particularly applicable to quantum machine learning workloads, where efficient storage and retrieval of training data and model parameters would be valuable, and potentially in future quantum networks, where it could serve as quantum information relay points.
Though the announcement doesn't include performance benchmarks, deployment timelines, or commercialization strategies, this technology development positions WiMi in the emerging quantum computing ecosystem, an area attracting significant investment as companies prepare for the transition from classical to quantum computing paradigms.
In classical computer systems, Random Access Memory (RAM) is used for efficient storage and retrieval of data. However, with the widespread application and increasing complexity of quantum computers, traditional RAM can no longer meet the storage demands of quantum computing systems. The new Quantum Random Access Memory (QRAM) is a dedicated memory designed for quantum computing systems, used for efficient storage and retrieval of data in both classical and quantum domains.
The new QRAM offers storage efficiency and capacity far beyond traditional classical RAM, enabling more efficient storage of both classical and quantum information. It adopts a fixed structural design that maximizes storage space utilization while maintaining stability, thereby increasing the overall capacity of the memory. While classical RAM requires memory modules to be expanded according to storage needs, the new QRAM technology, through quantum parallelism, allows storage capacity to dynamically adjust with the complexity of computational tasks, thus avoiding the expansion bottlenecks encountered in classical RAM.
The QRAM technology proposed by WiMi allows for access to any location in the memory with O(1) time complexity. This means that, regardless of the size of the memory, a quantum computer can efficiently access data in storage units in constant time. This feature greatly enhances the overall computational efficiency of quantum computing. In contrast to traditional RAM, where the access time increases as the number of storage units grows, QRAM achieves true constant-time access, breaking through the performance bottleneck in both computation and storage.
The new QRAM can not only store classical data but also store quantum data. While classical RAM can only handle bit data, QRAM can process quantum bit (qubit) information. It can store this data as classical information or directly store quantum states. The fusion of classical and quantum computing has become a trend for future computing, and thus, the demand for memory that can simultaneously store both types of data is particularly urgent. This QRAM technology addresses this critical need.
Another technological breakthrough of QRAM is its ability to support access to both known and unknown quantum states. Unlike classical computing, quantum computing often needs to deal with quantum states that have not yet been measured. The proposed QRAM technology can efficiently handle these quantum states and, through a well-designed architecture, ensure data storage and retrieval without destroying the quantum state superposition. This feature is especially important for computational tasks that require the quantum state to be maintained for extended periods.
WiMi's brand-new, efficient Quantum Random Access Memory (QRAM) utilizes quantum bits (qubits) as its core components. Qubits can exist in multiple superposition states simultaneously, whereas classical bits can only be in a state of 0 or 1. To fully exploit the superposition states of qubits for information storage, the design of QRAM is based on the effective storage and manipulation of quantum states. Specifically, QRAM employs a storage solution based on superconducting quantum interference devices (SQUIDs), which ensures that quantum states maintain their quantum properties during the storage process. Meanwhile, QRAM optimizes the interactions between qubits to ensure that data is not subject to quantum state collapse during storage and retrieval.
In classical RAM, the address decoder is the core module for locating storage units. Similarly, QRAM also requires an efficient quantum address decoder. In WiMi's QRAM technology, the quantum address decoder employs a new parallel address decoding method, which can quickly determine storage locations and perform data retrieval. Through the design of quantum algorithms, the address decoder can decode address information in constant time, which is one of the key technologies enabling QRAM to achieve O(1) access time.
For storing and retrieving classical and quantum data, QRAM employs different mechanisms. Classical data can be directly stored in the fixed states of qubits and retrieved by measurement. In contrast, for quantum data, non-destructive measurement techniques are used to ensure that the quantum superposition state does not collapse during the reading process. This technology uses specific quantum gate operations that allow quantum information to be read without disturbing the quantum state, ensuring the integrity of the quantum state for subsequent quantum computations.
During quantum storage, the system inevitably experiences interference from external noise, leading to quantum decoherence. To address this issue, WiMi's QRAM incorporates a quantum error correction mechanism. Using quantum error-correcting codes, QRAM can detect and correct errors that arise during the storage process in real-time. The introduction of this error-correction mechanism significantly enhances the reliability of quantum storage and ensures the integrity of quantum states.
The introduction of WiMi's new, efficient Quantum Random Access Memory (QRAM) has greatly enhanced the storage capacity and computational efficiency of quantum computing systems. In the future, as quantum computing application scenarios continue to expand, QRAM will become an indispensable key component in quantum computing systems. Large-scale quantum computing requires processing vast amounts of data, which traditional classical memory cannot meet. QRAM, with its efficient storage and retrieval capabilities, will enable quantum computers to handle large volumes of data in a short time, making it ideal for large-scale quantum computing tasks.
Additionally, quantum machine learning is an important application field of quantum computing. In the process of quantum machine learning, QRAM can be used to efficiently store and retrieve training data and model parameters, providing support for quantum algorithms and thereby accelerating the training and inference processes of quantum machine learning. The future quantum internet will require an efficient storage solution to store and transmit quantum information. QRAM technology can not only serve as memory for quantum computers but also act as a relay station in quantum networks, storing and transmitting quantum state data.
WiMi's new, efficient Quantum Random Access Memory (QRAM) technology is undoubtedly a significant technological breakthrough in the field of quantum computing. As this technology matures and is applied, the performance of quantum computers will be greatly enhanced, bringing unprecedented technological transformations and application prospects to human society.
About WiMi Hologram Cloud
WiMi Hologram Cloud, Inc. (NASDAQ:WiMi) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.
Safe Harbor Statements
This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.
Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.
View original content:https://www.prnewswire.com/news-releases/wimi-unveils-new-efficient-quantum-random-access-memory-technology-302564477.html
SOURCE WiMi Hologram Cloud Inc.