MicroCloud Hologram Develops An SLM-Based Time Division Multiplexing CDHD System
MicroCloud Hologram Inc. (NASDAQ: HOLO) announced the development of an SLM-Based Time Division Multiplexing CDHD (Computer Digital Holographic Display) System. This innovation stems from the company's independent R&D efforts and aims to bolster its intellectual property protection and technological edge. The new system utilizes computer-generated holography (CGH) and advanced modulation techniques to deliver dynamic holographic 3D displays that could revolutionize the display industry. HOLO's CDHD system is designed for high-frequency operation, enhancing visual quality by minimizing flicker. The company anticipates that this technology will soon be commercially available.
- Development of SLM-Based CDHD system enhances HOLO's technological leadership.
- Utilizes advanced CGH technology for dynamic 3D displays, addressing market demand.
- Potential for commercialization at the residential level, tapping into consumer markets.
- None.
Insights
Analyzing...
HOLO combines computer technology with spatial frequency domain filter technology and applies its designed technology in CGH (Computer-Generated Holography), which plays a very important position in this field. New light modulators, digital sensing sensors, and liquid crystal display technologies are also applied to CDHD technology. Over the past decade, CGH digital content and display technology has made great strides and is expected to achieve commercialization at the residential level in the near future.
Holographic technology is based on the theory of interference diffraction. HOLO's CDHD system will generate and reconstruct holographic digital images of RGB-colored objects separately based on the SLM-based time-division multiplexing technology. With this method applied, the RGB lasers can emit light in a temporal order on a single SLM, and the corresponding holograms will be loaded onto the SLM synchronously.
Since HOLO's CDHD system applies SLM-based time difference multiplexing technology, it requires the RGB laser and the corresponding holographic digital content to match sufficiently high frequency (no less than 180Hz). This allows the RGB light source to maintain a persistent effect when passing through the human eye, allowing the human eye to observe soft, non-flickering holographic color digital content. Also, the system requires SLM with very high frame rates to correspond to the high-frequency lasers. In addition, the system requires precise synchronization of the RGB laser and the corresponding loading of holographic digital content frames. The system comes with a signal synchronization controller to control the synchronization of the signals. As CGH is the technology used for image processing, frame loss can occur during the transmission of holographic digital images. Despite that, the signal synchronization controller can do null-difference processing to jump the laser signal directly to the next RGB signal to achieve continuous synchronization of the next frame.
Traditional optical holography relies on optical systems and light-sensitive materials to complete the recording and reconstruction process. Optical holograms are usually static and have strict requirements on the stability of the optical system, which restricts the application of dynamic holography in displays. With the computer and optoelectronic technology development, CGH has become a hot spot for international research. In CGH, the recording process can be simulated by computer, and reconstruction can be achieved by applying CGH technology to an SLM with coherent illumination. Compared with optical holography, CGH can record not only natural objects but also virtual objects without complex optical systems and can achieve dynamic holographic 3D displays with the help of refreshable SLM. CGH, because of these advantages, is a future-proof 3D display technology that can be used in many fields, such as education, entertainment, the military, and medicine. In the future, the mainstream will be CGH-based recording of digital holographic content through sensors in optical systems.
Holographic display is considered one of the most promising 3D display technologies and the ultimate pursuit and goal of the display industry, as it can reconstruct all the depth clues of a 3D scene. At the same time, the further development of color dynamic holographic 3D display still has great potential for technology iteration and upgrade and contains huge development opportunities. With the development of the CGH algorithm, new devices, and systems, HOLO's SLM-Based Time Division Multiplexing CDHD System will be constantly iterated and updated. HOLO is committed to making it easier for humans to access visual information so that they will no longer be limited by the 2D screen where data cannot be fully presented. 3D holographic displays will be commercially available in the market and even in people's daily lives.
About
Safe Harbor Statements
This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates" and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release, as well as the Company's strategic and operational plans, contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the
View original content:https://www.prnewswire.com/news-releases/microcloud-hologram-develops-an-slm-based-time-division-multiplexing-cdhd-system-301723333.html
SOURCE