Quantum eMotion Announces Successful Completion of Quantum Simulation Project Evaluating Sentry-Q Cryptographic Architecture
Quantum eMotion (OTCQB: QNCCF) has completed an internal quantum simulation project evaluating its cryptographic architecture. The project, conducted with PINQ², used IBM's Qiskit quantum computing framework to simulate Grover's algorithm and assess the security of QeM's Quantum Random Number Generator (QRNG).
Key findings revealed that Grover's algorithm's success rate significantly decreases with larger key sizes, and QeM's QRNG integration increases oracle complexity and circuit depth in simulated quantum circuits. At 256-bit key sizes, the algorithm would require approximately 2¹²⁸ iterations, making quantum attacks impractical with current technology.
Quantum eMotion (OTCQB: QNCCF) ha completato un progetto interno di simulazione quantistica per valutare la sua architettura crittografica. Il progetto, realizzato in collaborazione con PINQ², ha utilizzato il framework di calcolo quantistico Qiskit di IBM per simulare l'algoritmo di Grover e analizzare la sicurezza del Generatore Quantistico di Numeri Casuali (QRNG) di QeM.
I risultati principali hanno mostrato che il tasso di successo dell'algoritmo di Grover diminuisce significativamente con l'aumentare della lunghezza delle chiavi, mentre l'integrazione del QRNG di QeM aumenta la complessità dell'oracolo e la profondità del circuito nelle simulazioni quantistiche. Con chiavi a 256 bit, l'algoritmo richiederebbe circa 2¹²⁸ iterazioni, rendendo gli attacchi quantistici impraticabili con la tecnologia attuale.
Quantum eMotion (OTCQB: QNCCF) ha completado un proyecto interno de simulación cuántica para evaluar su arquitectura criptográfica. El proyecto, realizado junto con PINQ², utilizó el framework de computación cuántica Qiskit de IBM para simular el algoritmo de Grover y evaluar la seguridad del Generador Cuántico de Números Aleatorios (QRNG) de QeM.
Los hallazgos clave revelaron que la tasa de éxito del algoritmo de Grover disminuye significativamente con tamaños de clave mayores, y la integración del QRNG de QeM aumenta la complejidad del oráculo y la profundidad del circuito en las simulaciones cuánticas. Para claves de 256 bits, el algoritmo requeriría aproximadamente 2¹²⁸ iteraciones, haciendo que los ataques cuánticos sean imprácticos con la tecnología actual.
Quantum eMotion (OTCQB: QNCCF)은 자체 양자 시뮬레이션 프로젝트를 완료하여 암호화 아키텍처를 평가했습니다. PINQ²와 협력하여 진행된 이 프로젝트는 IBM의 Qiskit 양자 컴퓨팅 프레임워크를 사용해 Grover 알고리즘을 시뮬레이션하고 QeM의 양자 난수 생성기(QRNG)의 보안성을 평가했습니다.
주요 결과는 Grover 알고리즘의 성공률이 키 크기가 커질수록 크게 감소한다는 점과 QeM의 QRNG 통합이 시뮬레이션된 양자 회로에서 오라클 복잡도와 회로 깊이를 증가시킨다는 것을 보여주었습니다. 256비트 키 크기에서는 알고리즘이 약 2¹²⁸번의 반복을 필요로 하여 현재 기술로는 양자 공격이 비현실적임을 의미합니다.
Quantum eMotion (OTCQB : QNCCF) a achevé un projet interne de simulation quantique visant à évaluer son architecture cryptographique. Ce projet, réalisé en collaboration avec PINQ², a utilisé le framework de calcul quantique Qiskit d'IBM pour simuler l'algorithme de Grover et évaluer la sécurité du Générateur Quantique de Nombres Aléatoires (QRNG) de QeM.
Les résultats clés ont révélé que le taux de réussite de l'algorithme de Grover diminue significativement avec des tailles de clés plus grandes, et que l'intégration du QRNG de QeM augmente la complexité de l'oracle ainsi que la profondeur des circuits dans les simulations quantiques. Pour des clés de 256 bits, l'algorithme nécessiterait environ 2¹²⁸ itérations, rendant les attaques quantiques impraticables avec la technologie actuelle.
Quantum eMotion (OTCQB: QNCCF) hat ein internes Quanten-Simulationsprojekt abgeschlossen, um seine kryptografische Architektur zu bewerten. Das Projekt, das in Zusammenarbeit mit PINQ² durchgeführt wurde, nutzte IBMs Qiskit Quantum-Computing-Framework, um Grovers Algorithmus zu simulieren und die Sicherheit von QeMs Quantum Random Number Generator (QRNG) zu prüfen.
Wesentliche Erkenntnisse zeigten, dass die Erfolgsrate von Grovers Algorithmus mit zunehmender Schlüssellänge deutlich abnimmt und die Integration des QRNG von QeM die Orakelkomplexität sowie die Schaltungstiefe in simulierten Quanten-Schaltkreisen erhöht. Bei 256-Bit-Schlüsseln würde der Algorithmus etwa 2¹²⁸ Iterationen benötigen, was Quantenangriffe mit aktueller Technologie unpraktisch macht.
- Simulation results validate QRNG's strong resistance to quantum attacks
- Integration of QRNG increases computational burden for potential quantum attackers
- Project establishes foundation for future validation in embedded environments
- Simulations currently limited to small key sizes
- Further validation needed in real-world embedded and edge environments
Montreal, Quebec--(Newsfile Corp. - June 26, 2025) - Quantum eMotion Corp. (TSXV: QNC) (OTCQB: QNCCF) (FSE: 34Q0) ("QeM" or the "Company"), a developer of quantum-secure technologies, announces the completion of an internal quantum simulation project assessing aspects of its cryptographic architecture.
The benchmarking project, conducted in collaboration with PINQ², utilized IBM's Qiskit quantum computing framework to simulate Grover's algorithm—a quantum search algorithm known for its theoretical ability to speed up brute-force attacks on symmetric encryption schemes. The analysis focused on evaluating the relative complexity of attacking symmetric encryption algorithms when enhanced with entropy from QeM's proprietary Quantum Random Number Generator (QRNG).
Key Observations:
- Simulations indicate that the success rate of Grover's algorithm decreases significantly with increasing key size.
- The integration of QeM's QRNG appears to increase oracle complexity and circuit depth in the simulated quantum circuits, suggesting a higher computational burden for potential quantum attackers.
- At projected real-world key sizes (e.g., 256 bits), Grover's algorithm would require approximately 2¹²⁸ iterations to succeed, rendering such attacks infeasible with foreseeable quantum hardware.
"While our simulations are conducted at small key sizes, the extrapolated trends support a clear conclusion: the integration of our QRNG-generated entropy demonstrates characteristics consistent with strong resistance to quantum attacks," said Dr. Francis Bellido, CEO of Quantum eMotion. "This work strengthens our confidence in the security-by-design approach we are taking with Sentry-Q and our broader post-quantum product roadmap."
The project lays the groundwork for future validation in embedded and edge environments. Next-phase development will include hybrid testbenches and real-time emulation of cryptographic architectures enhanced with QRNG under constrained computing conditions.
About QeM
The Company aims to address the growing demand for affordable hardware and software security for connected devices. QeM has become a pioneering force in classical and quantum cybersecurity solutions thanks to its patented Quantum Random Number Generator, a security solution that exploits the built-in unpredictability of quantum mechanics and promises to provide enhanced protection for high-value assets and critical systems.
The Company intends to target highly valued Financial Services, Healthcare, Blockchain Applications, Cloud-Based IT Security Infrastructure, Classified Government Networks and Communication Systems, Secure Device Keying (IOT, Automotive, Consumer Electronics) and Quantum Cryptography.
For further information, please visit our website at https://www.quantumemotion.com/ or contact:
Francis Bellido, Chief Executive Officer
Tel: 514.956.2525
Email: info@quantumemotion.com
Website: www.quantumemotion.com
Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.
This press release may contain forward-looking statements that are subject to known and unknown risks and uncertainties that could cause actual results to vary materially from targeted results. Such risks and uncertainties include those described in the Corporation's periodic reports including the annual report or in the filings made by Quantum from time to time with securities regulatory authorities.
To view the source version of this press release, please visit https://www.newsfilecorp.com/release/256939