WiMi Studies Quantum Dilated Convolutional Neural Network Architecture
WiMi Hologram Cloud (NASDAQ: WIMI) announced active exploration of Quantum Dilated Convolutional Neural Network (QDCNN) technology on October 13, 2025.
The release describes integrating quantum computing (qubits, superposition, entanglement) with dilated CNNs to expand receptive fields, speed up convolutional feature extraction via quantum parallelism, and potentially improve generalization and long-distance dependency modeling. WiMi says future work will optimize quantum/classical task scheduling, algorithm modularity, and distributed quantum processing for scalable applications across healthcare, intelligent transportation, and environmental analysis.
WiMi Hologram Cloud (NASDAQ: WIMI) ha annunciato l'8 ottobre 2025 una attiva esplorazione della tecnologia Rete Neurale Convoluzionale Dilatata Quantistica (QDCNN).
Il comunicato descrive l'integrazione del calcolo quantistico (qubit, sovrapposizione, intreccio) con CNN dilatate per ampliare i campi ricettivi, accelerare l'estrazione delle caratteristiche convoluzionali tramite parallelismo quantistico e, potenzialmente, migliorare la generalizzazione e la modellazione delle dipendenze a lungo raggio. WiMi afferma che i lavori futuri ottimizzeranno la programmazione di compiti quantistici/classici, la modularità degli algoritmi e l'elaborazione quantistica distribuita per applicazioni scalabili nei settori sanitario, dei trasporti intelligenti e dell'analisi ambientale.
WiMi Hologram Cloud (NASDAQ: WIMI) anunció el 13 de octubre de 2025 una exploración activa de la tecnología Red Neuronal Convolucional Dilatada Cuántica (QDCNN).
El comunicado describe la integración de la computación cuántica (qubits, superposición, entrelazamiento) con CNN dilatadas para ampliar los campos receptivos, acelerar la extracción de características convolucionales mediante el paralelismo cuántico y, potencialmente, mejorar la generalización y el modelado de dependencias a larga distancia. WiMi dice que el trabajo futuro optimizará la programación de tareas cuánticas/clásicas, la modularidad de los algoritmos y el procesamiento cuántico distribuido para aplicaciones escalables en atención médica, transporte inteligente y análisis ambiental.
WiMi Hologram Cloud (나스닥: WIMI)는 2025년 10월 13일 양자 확장 합성곱 신경망(QDCNN) 기술에 대한 적극적 탐사를 발표했습니다.
보도자료는 양자 컴퓨팅(퀘비트, 중첩, 얽힘)을 확장된 수용 영역을 가진 CNN과 통합하여 수용 필드를 확장하고, 양자 병렬성을 통해 합성곱 특징 추출을 가속화하며, 일반화와 장거리 의존성 모델링을 잠재적으로 개선할 수 있다고 설명합니다. WiMi는 앞으로 양자/고전적 작업 스케줄링, 알고리즘 모듈성, 분산 양자 처리의 최적화를 통해 보건의료, 스마트 교통, 환경 분석에 걸친 확장 가능한 응용에 추진할 것이라고 말합니다.
WiMi Hologram Cloud (NASDAQ: WIMI) a annoncé le 13 octobre 2025 une exploration active de la technologie Réseau de neurones convolutionnels dilatés quantiques (QDCNN).
Le communiqué décrit l'intégration de l'informatique quantique (qubits, superposition, intrication) avec des CNN dilatés pour étendre les champs récepteurs, accélérer l'extraction des caractéristiques convolutionnelles grâce au parallélisme quantique et, potentiellement, améliorer la généralisation et la modélisation des dépendances à longue distance. WiMi indique que les travaux futurs optimiseront la planification des tâches quantiques/classiques, la modularité des algorithmes et le traitement quantique distribué pour des applications évolutives dans les soins de santé, les transports intelligents et l'analyse environnementale.
WiMi Hologram Cloud (NASDAQ: WIMI) kündigte am 13. Oktober 2025 eine aktive Erkundung der Quanten-Dilatierte Konvolutions-Neuronalen Netze (QDCNN) Technologie an.
Die Meldung beschreibt die Integration von Quantencomputing (Qubits, Superposition, Verschränkung) mit dilatierten CNNs, um rezeptive Felder zu erweitern, die Extraktion konvolutionaler Merkmale durch Quantenparallelismus zu beschleunigen und potenziell die Generalisierung sowie die Modellierung von Langzeitabhängigkeiten zu verbessern. WiMi sagt, dass zukünftige Arbeiten die Planung quanten- und klassischer Aufgaben, die Modularität von Algorithmen und die verteilte Quantenverarbeitung für skalierbare Anwendungen in Gesundheitswesen, intelligenter Verkehr und Umweltanalyse optimieren werden.
WiMi Hologram Cloud (وولماذين: WIMI) أعلنت في 13 أكتوبر 2025 عن استكشاف نشط لتقنية شبكة الأعصاب الالتفافية الموسعة كموميًا (QDCNN).
يصف البيان دمج الحوسبة الكمّية (كيوبتات، تراكب، تشابك) مع CNNs الموسعة لتوسيع مجال الاستقبال، وتسريع استخراج الميزات الالتفافية عبر التوازي الكمي، وربما تحسين التعميم ونمذجة الاعتماديات الطويلة المدى. تقول WiMi إن الأعمال المستقبلية ستُحسّن جدولة المهام الكمية/الكلاسيكية، ومرونة الخوارزميات، ومعالجة كمومية موزعة لتطبيقات قابلة للتوسع في الرعاية الصحية، والنقل الذكي، وتحليل البيئة.
WiMi Hologram Cloud(纳斯达克:WIMI) 于 2025 年 10 月 13 日宣布对 量子膨胀卷积神经网络(QDCNN) 技术进行积极探索。
公告描述了将量子计算(量子比特、叠加、纠缠)与膨胀卷积神经网络结合,以扩大感受野、通过量子并行性加速卷积特征提取,并可能改善泛化能力与长距离依赖建模。WiMi 表示未来工作将优化量子/经典任务调度、算法模块化以及分布式量子处理,以实现医疗保健、智能交通与环境分析等领域的可扩展应用。
- None.
- None.
The traditional Convolutional Neural Network (CNN) is a cornerstone in the field of deep learning. Through a combination of convolutional layers, pooling layers, and fully connected layers, it can automatically extract features from large amounts of data. In the convolutional layer, the convolution kernel slides over the input data, performing convolution operations to extract local features. The pooling layer reduces the data dimensions through downsampling, lowering computational load while preserving key information. The fully connected layer integrates the features processed by convolution and pooling, outputting the final classification or prediction results. However, with the explosive growth of data volume and the increasing complexity of problems, traditional CNNs are gradually facing bottlenecks in computational efficiency and feature extraction capabilities.
Quantum computing introduces the concept of quantum bits (qubits). Unlike the binary bits of traditional computers, qubits can exist in multiple superposition states, endowing quantum computers with powerful parallel computing capabilities. The Quantum Dilated Convolutional Neural Network (QDCNN) technology explored by WiMi ingeniously integrates the advantages of quantum computing into the traditional CNN architecture. In QDCNN, certain computational operations are performed by quantum processors. For example, in convolution operations, quantum gate operations are used to perform quantized computations on the convolution kernel and input data, enabling simultaneous processing of multiple data states, which significantly accelerates the feature extraction process. Quantum entanglement properties are also utilized to enhance information transfer and collaborative processing capabilities between different nodes in the network, allowing the network to more efficiently capture complex relationships within the data.
Through dilated convolution technology, the receptive field of the convolution kernel is expanded, enabling the acquisition of broader contextual information without increasing the number of parameters. This is highly effective for processing data with long-distance dependencies, such as natural language text and large-scale images. In Quantum Dilated Convolutional Neural Networks (QDCNN), quantum computing further enhances the effect of dilated convolution. Quantum algorithms can more precisely calculate the weight coefficients in dilated convolution, allowing the network to more accurately model complex features while expanding the receptive field. Traditional CNNs experience exponential growth in computational load when processing large-scale data. In contrast, QDCNN leverages the parallelism of quantum computing to complete convolution operations on massive datasets in a short amount of time.
Quantum Dilated Convolutional Neural Networks not only extract the features that traditional CNNs can obtain but also uncover hidden quantum-level feature information in the data. The superposition and entanglement states of quantum computing enable the network to analyze data from multiple perspectives simultaneously, identifying subtle feature differences that are difficult to detect with traditional methods. Due to quantum computing's ability to explore a larger data feature space, the models built by QDCNN exhibit stronger generalization capabilities. When faced with new, unseen data, QDCNN models can better adapt and predict, reducing the occurrence of overfitting.
Achieving efficient collaboration between quantum computing and classical computing is a major challenge for QDCNN. In the future, WiMi will optimize the data transmission and task scheduling mechanisms between quantum computing and classical computing, rationally allocating computational tasks to allow quantum processors to focus on parts where quantum acceleration is significant, while classical processors handle traditional computational tasks, thereby improving the overall operational efficiency of the system. Additionally, WiMi will reduce algorithm complexity by optimizing algorithm structures, adopting layered designs, and implementing modular programming. At the same time, research into distributed quantum computing technology will enable quantum computing tasks to be distributed across multiple quantum processors for parallel processing, enhancing the scalability of QDCNN and making it capable of meeting the demands of large-scale data processing and complex application scenarios.
With continuous exploration and innovation in Quantum Dilated Convolutional Neural Network technology, it is expected to find wide applications in more fields. For example, in the medical field, Quantum Dilated Convolutional Neural Network technology can be used for molecular structure analysis and disease prediction in drug development, accelerating the process of new drug discovery and improving healthcare standards. In the field of intelligent transportation, it can enable more accurate traffic flow prediction and intelligent driving decisions, enhancing traffic safety and efficiency. In environmental protection, it can analyze large amounts of environmental data to predict climate change trends, providing strong support for formulating environmental policies.
About WiMi Hologram Cloud
WiMi Hologram Cloud Inc. (NASDAQ: WiMi) focuses on holographic cloud services, primarily concentrating on professional fields such as in-vehicle AR holographic HUD, 3D holographic pulse LiDAR, head-mounted light field holographic devices, holographic semiconductors, holographic cloud software, holographic car navigation, metaverse holographic AR/VR devices, and metaverse holographic cloud software. It covers multiple aspects of holographic AR technologies, including in-vehicle holographic AR technology, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR virtual advertising technology, holographic AR virtual entertainment technology, holographic ARSDK payment, interactive holographic virtual communication, metaverse holographic AR technology, and metaverse virtual cloud services. WiMi is a comprehensive holographic cloud technology solution provider. For more information, please visit http://ir.wimiar.com.
Translation Disclaimer
The original version of this announcement is the officially authorized and only legally binding version. If there are any inconsistencies or differences in meaning between the Chinese translation and the original version, the original version shall prevail. WiMi Hologram Cloud Inc. and related institutions and individuals make no guarantees regarding the translated version and assume no responsibility for any direct or indirect losses caused by translation inaccuracies.
View original content:https://www.prnewswire.com/news-releases/wimi-studies-quantum-dilated-convolutional-neural-network-architecture-302581938.html
SOURCE WiMi Hologram Cloud Inc.